Polarized RHIC in the past and in Run-9

Christoph Montag

RSC Meeting, October 3, 2008

Run-8 Time-Line

• January 28: End of d-Au run, switch-over to polarized protons.

• February 14: Start of polarized protons physics run.

• March 10: End of polarized protons run, switch-over to low-energy Au-Au.

• March 11: End of Run-8, start warm-up.

Polarized Proton Goals (in a nutshell)

• STAR:

- 1. Unpolarized comparison data for d-Au.
- 2. Transverse (vertical) spin running.

• PHENIX:

- 1. 250 GeV (did not happen).
- 2. Transverse (radial) spin running.
- 3. Machine development towards higher luminosity.

Goals (cont.)

• RHIC:

- 1. Satisfy all customers in terms of physics running.
- 2. Machine development towards higher luminosity in Run-9 and beyond.

⇒ High expectations, conflicting goals – and only six weeks of running!

The short, sad life of the near-integer working point

Motivation:

- In Run-6, performance was beam-beam limited. With working points on opposite sides of the diagonal, the beam above the diagonal inevitably suffered.
- To overcome this, a new (better) working point was necessary.
- Best candidate: near-integer (.96/.95).

Known challenges:

- β -beat scales as $1/\sin(2\pi Q)$.
- Orbit distortion scales as $1/\sin(\pi Q)$.
- 10 Hz beam-beam offset (= modulated orbit distortion) increases but we have a dedicated feedback for that.

Blue beam decay and orbit jitter – perfect correlation!

High beam decay causes background – too much for experiments. Abandoned after one week.

Back to Run-6 configuration

- Reloaded pp28 as pp83.
- Two-person shifts for shorter start-up time.
- Colliding beams within 24 hours!
- Increased injected bunch intensity up to 1.84e11 (Blue)/ 1.76e11 (Yellow).
- No hard beam-beam limit observed. Both beams are below the diagonal.

Polarization

- Polarization was significantly lower than in Run-6.
- AGS performance lower than in Run-6. Initially injection on-the-fly, later returned to Run-6 configuration to improve performance.
- Poor Yellow polarization transmission (\approx 75 percent).
- Two days before the end of the run, horizontal snake orbit angle was identified as possible cause of Yellow polarization loss.

• Broken BPM in Yellow snake region prevented otherwise straightforward orbit correction.

 Unsuccessfully attempted orbit angle scan; not enough ramps.

• Careful analysis of survey data during the shutdown revealed that horizontal snake orbit is likely cause of polarization loss.

Horizontal snake angle from survey data

BLUE

YELLOW

 $\Delta\Theta = -0.03 \, \mathrm{mrad}$

 $\Delta\Theta = -0.11 \, \mathrm{mrad}$

Resulting spin tune error due to snake orbit angle:

$$\Delta Q_s = G\gamma \frac{\Delta \Theta}{\pi}$$

Consistent with spin tune measurements

β^* -squeeze

- Several attempts during APEX and Machine Development to squeeze to $\beta^* = 0.7 \, \text{m}$.
- Each and every time, we almost made it operational but not quite. Reasons: Lack of time, human error,...
- Achieved so far: 56 bunches at store.
- Backgrounds are as low as for $\beta^* = 1.0 \,\mathrm{m}$.
- Lifetime at store requires nonlinear chromaticity correction.

Courtesy Wolfram Fischer

Courtesy Wolfram Fischer

Courtesy Peter Ingrassia

Courtesy Peter Ingrassia

Improvements and plans for Run-9

- Run-9 will start with 250 GeV (Mei).
- Ramps will be identical up to 100 GeV.
- Continuous AGS tuning during 250 GeV run.
- Repair BPMs and re-align RHIC snake regions.
- → start-up at 100 GeV should be extremely fast; RF capture, instrumentation timing identical to 250 GeV.

Tighter β^* -squeeze

• $\beta^* = 70 \, \text{cm}$ was tested during Run-8.

• Luminosity lifetime/beam lifetime at store are uncertain.

• Tracking studies underway to determine initial β^* value for Run-9; most likely 70 cm.

■ 30 – 40 percent luminosity increase seems realistic.

Nonlinear chromaticity correction

- Eliminate tune spread from nonlinear chromaticity, then fill up this space by beam-beam.
- Experience with $\beta^* = 70 \, \mathrm{cm}$ in Run-8 showed that this is required for good lifetime.
- 20 30 percent luminosity increase (?)

9 MHz cavity

- Reduces bunchlength by factor $\sqrt{2}$.
- Shorter bunches improve hourglass factor.
- Longer bunches on the ramp also reduce transverse emittance blow-up due to lower density/peak current.
- Common cavity will lock bunches on the ramp avoids long-range beam-beam.
- To be commissioned during 250 GeV set-up (?)
- 20 30 percent luminosity increase (at $\beta^* = 1.0 \,\mathrm{m}$).

Conclusion

- Goals on delivered polarized protons luminosity and FOM were met according to projections.
- Time in store reached a new record: (60ϵ) percent for polarized protons.
- However, six weeks were too short to make real progress in Run-8.
- β^* -squeeze was an important development towards higher proton luminosity in Run-9.
- Expect to reach enhanced luminosity goals in Run-9.